Serveur d'exploration Phytophthora

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Patterns of plant subcellular responses to successful oomycete infections reveal differences in host cell reprogramming and endocytic trafficking.

Identifieur interne : 001474 ( Main/Exploration ); précédent : 001473; suivant : 001475

Patterns of plant subcellular responses to successful oomycete infections reveal differences in host cell reprogramming and endocytic trafficking.

Auteurs : Yi-Ju Lu [Allemagne] ; Sebastian Schornack ; Thomas Spallek ; Niko Geldner ; Joanne Chory ; Swen Schellmann ; Karin Schumacher ; Sophien Kamoun ; Silke Robatzek

Source :

RBID : pubmed:22233428

Descripteurs français

English descriptors

Abstract

Adapted filamentous pathogens such as the oomycetes Hyaloperonospora arabidopsidis (Hpa) and Phytophthora infestans (Pi) project specialized hyphae, the haustoria, inside living host cells for the suppression of host defence and acquisition of nutrients. Accommodation of haustoria requires reorganization of the host cell and the biogenesis of a novel host cell membrane, the extrahaustorial membrane (EHM), which envelops the haustorium separating the host cell from the pathogen. Here, we applied live-cell imaging of fluorescent-tagged proteins labelling a variety of membrane compartments and investigated the subcellular changes associated with accommodating oomycete haustoria in Arabidopsis and N. benthamiana. Plasma membrane-resident proteins differentially localized to the EHM. Likewise, secretory vesicles and endosomal compartments surrounded Hpa and Pi haustoria revealing differences between these two oomycetes, and suggesting a role for vesicle trafficking pathways for the pathogen-controlled biogenesis of the EHM. The latter is supported by enhanced susceptibility of mutants in endosome-mediated trafficking regulators. These observations point at host subcellular defences and specialization of the EHM in a pathogen-specific manner. Defence-associated haustorial encasements, a double-layered membrane that grows around mature haustoria, were frequently observed in Hpa interactions. Intriguingly, all tested plant proteins accumulated at Hpa haustorial encasements suggesting the general recruitment of default vesicle trafficking pathways to defend pathogen access. Altogether, our results show common requirements of subcellular changes associated with oomycete biotrophy, and highlight differences between two oomycete pathogens in reprogramming host cell vesicle trafficking for haustoria accommodation. This provides a framework for further dissection of the pathogen-triggered reprogramming of host subcellular changes.

DOI: 10.1111/j.1462-5822.2012.01751.x
PubMed: 22233428
PubMed Central: PMC4854193


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Patterns of plant subcellular responses to successful oomycete infections reveal differences in host cell reprogramming and endocytic trafficking.</title>
<author>
<name sortKey="Lu, Yi Ju" sort="Lu, Yi Ju" uniqKey="Lu Y" first="Yi-Ju" last="Lu">Yi-Ju Lu</name>
<affiliation wicri:level="3">
<nlm:affiliation>Max-Planck-Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Max-Planck-Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Cologne</region>
<settlement type="city">Cologne</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Schornack, Sebastian" sort="Schornack, Sebastian" uniqKey="Schornack S" first="Sebastian" last="Schornack">Sebastian Schornack</name>
</author>
<author>
<name sortKey="Spallek, Thomas" sort="Spallek, Thomas" uniqKey="Spallek T" first="Thomas" last="Spallek">Thomas Spallek</name>
</author>
<author>
<name sortKey="Geldner, Niko" sort="Geldner, Niko" uniqKey="Geldner N" first="Niko" last="Geldner">Niko Geldner</name>
</author>
<author>
<name sortKey="Chory, Joanne" sort="Chory, Joanne" uniqKey="Chory J" first="Joanne" last="Chory">Joanne Chory</name>
</author>
<author>
<name sortKey="Schellmann, Swen" sort="Schellmann, Swen" uniqKey="Schellmann S" first="Swen" last="Schellmann">Swen Schellmann</name>
</author>
<author>
<name sortKey="Schumacher, Karin" sort="Schumacher, Karin" uniqKey="Schumacher K" first="Karin" last="Schumacher">Karin Schumacher</name>
</author>
<author>
<name sortKey="Kamoun, Sophien" sort="Kamoun, Sophien" uniqKey="Kamoun S" first="Sophien" last="Kamoun">Sophien Kamoun</name>
</author>
<author>
<name sortKey="Robatzek, Silke" sort="Robatzek, Silke" uniqKey="Robatzek S" first="Silke" last="Robatzek">Silke Robatzek</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22233428</idno>
<idno type="pmid">22233428</idno>
<idno type="doi">10.1111/j.1462-5822.2012.01751.x</idno>
<idno type="pmc">PMC4854193</idno>
<idno type="wicri:Area/Main/Corpus">001572</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001572</idno>
<idno type="wicri:Area/Main/Curation">001572</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001572</idno>
<idno type="wicri:Area/Main/Exploration">001572</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Patterns of plant subcellular responses to successful oomycete infections reveal differences in host cell reprogramming and endocytic trafficking.</title>
<author>
<name sortKey="Lu, Yi Ju" sort="Lu, Yi Ju" uniqKey="Lu Y" first="Yi-Ju" last="Lu">Yi-Ju Lu</name>
<affiliation wicri:level="3">
<nlm:affiliation>Max-Planck-Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Max-Planck-Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Cologne</region>
<settlement type="city">Cologne</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Schornack, Sebastian" sort="Schornack, Sebastian" uniqKey="Schornack S" first="Sebastian" last="Schornack">Sebastian Schornack</name>
</author>
<author>
<name sortKey="Spallek, Thomas" sort="Spallek, Thomas" uniqKey="Spallek T" first="Thomas" last="Spallek">Thomas Spallek</name>
</author>
<author>
<name sortKey="Geldner, Niko" sort="Geldner, Niko" uniqKey="Geldner N" first="Niko" last="Geldner">Niko Geldner</name>
</author>
<author>
<name sortKey="Chory, Joanne" sort="Chory, Joanne" uniqKey="Chory J" first="Joanne" last="Chory">Joanne Chory</name>
</author>
<author>
<name sortKey="Schellmann, Swen" sort="Schellmann, Swen" uniqKey="Schellmann S" first="Swen" last="Schellmann">Swen Schellmann</name>
</author>
<author>
<name sortKey="Schumacher, Karin" sort="Schumacher, Karin" uniqKey="Schumacher K" first="Karin" last="Schumacher">Karin Schumacher</name>
</author>
<author>
<name sortKey="Kamoun, Sophien" sort="Kamoun, Sophien" uniqKey="Kamoun S" first="Sophien" last="Kamoun">Sophien Kamoun</name>
</author>
<author>
<name sortKey="Robatzek, Silke" sort="Robatzek, Silke" uniqKey="Robatzek S" first="Silke" last="Robatzek">Silke Robatzek</name>
</author>
</analytic>
<series>
<title level="j">Cellular microbiology</title>
<idno type="eISSN">1462-5822</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Arabidopsis (immunology)</term>
<term>Arabidopsis (microbiology)</term>
<term>Cytoplasmic Vesicles (metabolism)</term>
<term>Cytoplasmic Vesicles (microbiology)</term>
<term>Host-Pathogen Interactions (MeSH)</term>
<term>Microscopy, Fluorescence (MeSH)</term>
<term>Oomycetes (cytology)</term>
<term>Oomycetes (growth & development)</term>
<term>Oomycetes (metabolism)</term>
<term>Oomycetes (pathogenicity)</term>
<term>Plant Diseases (microbiology)</term>
<term>Tobacco (immunology)</term>
<term>Tobacco (microbiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Arabidopsis (immunologie)</term>
<term>Arabidopsis (microbiologie)</term>
<term>Interactions hôte-pathogène (MeSH)</term>
<term>Maladies des plantes (microbiologie)</term>
<term>Microscopie de fluorescence (MeSH)</term>
<term>Oomycetes (croissance et développement)</term>
<term>Oomycetes (cytologie)</term>
<term>Oomycetes (métabolisme)</term>
<term>Oomycetes (pathogénicité)</term>
<term>Tabac (immunologie)</term>
<term>Tabac (microbiologie)</term>
<term>Vésicules cytoplasmiques (microbiologie)</term>
<term>Vésicules cytoplasmiques (métabolisme)</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Oomycetes</term>
</keywords>
<keywords scheme="MESH" qualifier="cytologie" xml:lang="fr">
<term>Oomycetes</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Oomycetes</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Oomycetes</term>
</keywords>
<keywords scheme="MESH" qualifier="immunologie" xml:lang="fr">
<term>Arabidopsis</term>
<term>Tabac</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>Arabidopsis</term>
<term>Tobacco</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Cytoplasmic Vesicles</term>
<term>Oomycetes</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Arabidopsis</term>
<term>Maladies des plantes</term>
<term>Tabac</term>
<term>Vésicules cytoplasmiques</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Arabidopsis</term>
<term>Cytoplasmic Vesicles</term>
<term>Plant Diseases</term>
<term>Tobacco</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Oomycetes</term>
<term>Vésicules cytoplasmiques</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogenicity" xml:lang="en">
<term>Oomycetes</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogénicité" xml:lang="fr">
<term>Oomycetes</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Host-Pathogen Interactions</term>
<term>Microscopy, Fluorescence</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Interactions hôte-pathogène</term>
<term>Microscopie de fluorescence</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Adapted filamentous pathogens such as the oomycetes Hyaloperonospora arabidopsidis (Hpa) and Phytophthora infestans (Pi) project specialized hyphae, the haustoria, inside living host cells for the suppression of host defence and acquisition of nutrients. Accommodation of haustoria requires reorganization of the host cell and the biogenesis of a novel host cell membrane, the extrahaustorial membrane (EHM), which envelops the haustorium separating the host cell from the pathogen. Here, we applied live-cell imaging of fluorescent-tagged proteins labelling a variety of membrane compartments and investigated the subcellular changes associated with accommodating oomycete haustoria in Arabidopsis and N. benthamiana. Plasma membrane-resident proteins differentially localized to the EHM. Likewise, secretory vesicles and endosomal compartments surrounded Hpa and Pi haustoria revealing differences between these two oomycetes, and suggesting a role for vesicle trafficking pathways for the pathogen-controlled biogenesis of the EHM. The latter is supported by enhanced susceptibility of mutants in endosome-mediated trafficking regulators. These observations point at host subcellular defences and specialization of the EHM in a pathogen-specific manner. Defence-associated haustorial encasements, a double-layered membrane that grows around mature haustoria, were frequently observed in Hpa interactions. Intriguingly, all tested plant proteins accumulated at Hpa haustorial encasements suggesting the general recruitment of default vesicle trafficking pathways to defend pathogen access. Altogether, our results show common requirements of subcellular changes associated with oomycete biotrophy, and highlight differences between two oomycete pathogens in reprogramming host cell vesicle trafficking for haustoria accommodation. This provides a framework for further dissection of the pathogen-triggered reprogramming of host subcellular changes.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22233428</PMID>
<DateCompleted>
<Year>2012</Year>
<Month>08</Month>
<Day>08</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1462-5822</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>14</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2012</Year>
<Month>May</Month>
</PubDate>
</JournalIssue>
<Title>Cellular microbiology</Title>
<ISOAbbreviation>Cell Microbiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Patterns of plant subcellular responses to successful oomycete infections reveal differences in host cell reprogramming and endocytic trafficking.</ArticleTitle>
<Pagination>
<MedlinePgn>682-97</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/j.1462-5822.2012.01751.x</ELocationID>
<Abstract>
<AbstractText>Adapted filamentous pathogens such as the oomycetes Hyaloperonospora arabidopsidis (Hpa) and Phytophthora infestans (Pi) project specialized hyphae, the haustoria, inside living host cells for the suppression of host defence and acquisition of nutrients. Accommodation of haustoria requires reorganization of the host cell and the biogenesis of a novel host cell membrane, the extrahaustorial membrane (EHM), which envelops the haustorium separating the host cell from the pathogen. Here, we applied live-cell imaging of fluorescent-tagged proteins labelling a variety of membrane compartments and investigated the subcellular changes associated with accommodating oomycete haustoria in Arabidopsis and N. benthamiana. Plasma membrane-resident proteins differentially localized to the EHM. Likewise, secretory vesicles and endosomal compartments surrounded Hpa and Pi haustoria revealing differences between these two oomycetes, and suggesting a role for vesicle trafficking pathways for the pathogen-controlled biogenesis of the EHM. The latter is supported by enhanced susceptibility of mutants in endosome-mediated trafficking regulators. These observations point at host subcellular defences and specialization of the EHM in a pathogen-specific manner. Defence-associated haustorial encasements, a double-layered membrane that grows around mature haustoria, were frequently observed in Hpa interactions. Intriguingly, all tested plant proteins accumulated at Hpa haustorial encasements suggesting the general recruitment of default vesicle trafficking pathways to defend pathogen access. Altogether, our results show common requirements of subcellular changes associated with oomycete biotrophy, and highlight differences between two oomycete pathogens in reprogramming host cell vesicle trafficking for haustoria accommodation. This provides a framework for further dissection of the pathogen-triggered reprogramming of host subcellular changes.</AbstractText>
<CopyrightInformation>© 2012 Blackwell Publishing Ltd.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Lu</LastName>
<ForeName>Yi-Ju</ForeName>
<Initials>YJ</Initials>
<AffiliationInfo>
<Affiliation>Max-Planck-Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Schornack</LastName>
<ForeName>Sebastian</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Spallek</LastName>
<ForeName>Thomas</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Geldner</LastName>
<ForeName>Niko</ForeName>
<Initials>N</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Chory</LastName>
<ForeName>Joanne</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Schellmann</LastName>
<ForeName>Swen</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Schumacher</LastName>
<ForeName>Karin</ForeName>
<Initials>K</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kamoun</LastName>
<ForeName>Sophien</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Robatzek</LastName>
<ForeName>Silke</ForeName>
<Initials>S</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<Agency>Howard Hughes Medical Institute</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D003160">Comparative Study</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>02</Month>
<Day>15</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Cell Microbiol</MedlineTA>
<NlmUniqueID>100883691</NlmUniqueID>
<ISSNLinking>1462-5814</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D017360" MajorTopicYN="N">Arabidopsis</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D022162" MajorTopicYN="N">Cytoplasmic Vesicles</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054884" MajorTopicYN="Y">Host-Pathogen Interactions</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008856" MajorTopicYN="N">Microscopy, Fluorescence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009868" MajorTopicYN="N">Oomycetes</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000472" MajorTopicYN="Y">pathogenicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010935" MajorTopicYN="N">Plant Diseases</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014026" MajorTopicYN="N">Tobacco</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">HHMIMS779769</OtherID>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>1</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>1</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>8</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22233428</ArticleId>
<ArticleId IdType="doi">10.1111/j.1462-5822.2012.01751.x</ArticleId>
<ArticleId IdType="pmc">PMC4854193</ArticleId>
<ArticleId IdType="mid">HHMIMS779769</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2010 Aug;11(8):556-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20588296</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2011 Sep;23(9):3463-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21934143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2007 Aug;20(8):966-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17722700</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biosci Bioeng. 2007 Jul;104(1):34-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17697981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2006 Mar;19(3):270-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16570657</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Jul 7;95(14):8398-403</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9653198</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2003 Jan 24;112(2):219-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12553910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Oct 13;95(21):12713-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9770551</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2010 Oct;5(10):1272-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20855950</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2009 May;21(5):1541-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19470590</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1998 Dec;16(6):735-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10069079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2009 Jul;59(1):169-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19309456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2010 Nov;22(11):3831-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21057060</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2010 Aug;13(4):427-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20447858</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2006;172(3):563-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17083686</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 1998 Mar;23(2):126-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9578626</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Feb 22;102(8):3135-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15703292</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Aug 30;108(35):14682-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21821794</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Cell Biol. 2005 Jun;84(6):609-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16032929</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2009 Sep;21(9):2898-913</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19749153</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2006 May 19;125(4):749-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16713565</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2010 Aug;5(8):1002-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20864817</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2002 Sep;7(9):411-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12234733</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2004 Apr 15;428(6984):764-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15085136</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 Sep;47(5):687-700</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16856980</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protoplasma. 2006 May;227(2-4):229-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16736261</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2009 Nov;60(4):744-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19686537</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Dec;20(12):3374-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19088329</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 Jan 2;323(5910):101-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19095900</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2009 Jul;21(7):2179-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19622802</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 Dec 18;456(7224):962-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18953331</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2010 Jun;22(6):2017-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20525849</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycopathologia. 2004 Nov;158(4):457-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15630555</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011 Jan 27;6(1):e16608</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21304602</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2001 Apr;14(4):439-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11310731</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2009 Mar;57(6):986-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19000165</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Microbiol. 2011 Feb;13(2):210-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20880355</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 May 19;473(7347):380-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21593871</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2006;171(4):699-718</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16918543</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2009 Mar 10;19(5):423-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19249211</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2007 Aug 21;581(21):3943-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17662727</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002 May;14(5):993-1003</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12034892</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 Feb 14;451(7180):835-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18273019</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2005 Nov;44(3):516-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16236160</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Nov;20(11):3050-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19033528</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2012 Jan;69(2):252-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21914011</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2003 Feb;33(4):775-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12609049</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2011 Aug;14(4):407-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21641854</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Nov 18;310(5751):1180-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16293760</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2008 Dec 9;18(23):1824-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19062288</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Microbiol. 2006 Jun;8(6):1009-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16681841</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2006 Dec;133(23):4679-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17090720</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2011 Jun;23(6):2422-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21685259</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Oct 30;425(6961):973-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14586469</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Dec 20;108(51):20832-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22143776</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Allemagne</li>
</country>
<region>
<li>District de Cologne</li>
<li>Rhénanie-du-Nord-Westphalie</li>
</region>
<settlement>
<li>Cologne</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Chory, Joanne" sort="Chory, Joanne" uniqKey="Chory J" first="Joanne" last="Chory">Joanne Chory</name>
<name sortKey="Geldner, Niko" sort="Geldner, Niko" uniqKey="Geldner N" first="Niko" last="Geldner">Niko Geldner</name>
<name sortKey="Kamoun, Sophien" sort="Kamoun, Sophien" uniqKey="Kamoun S" first="Sophien" last="Kamoun">Sophien Kamoun</name>
<name sortKey="Robatzek, Silke" sort="Robatzek, Silke" uniqKey="Robatzek S" first="Silke" last="Robatzek">Silke Robatzek</name>
<name sortKey="Schellmann, Swen" sort="Schellmann, Swen" uniqKey="Schellmann S" first="Swen" last="Schellmann">Swen Schellmann</name>
<name sortKey="Schornack, Sebastian" sort="Schornack, Sebastian" uniqKey="Schornack S" first="Sebastian" last="Schornack">Sebastian Schornack</name>
<name sortKey="Schumacher, Karin" sort="Schumacher, Karin" uniqKey="Schumacher K" first="Karin" last="Schumacher">Karin Schumacher</name>
<name sortKey="Spallek, Thomas" sort="Spallek, Thomas" uniqKey="Spallek T" first="Thomas" last="Spallek">Thomas Spallek</name>
</noCountry>
<country name="Allemagne">
<region name="Rhénanie-du-Nord-Westphalie">
<name sortKey="Lu, Yi Ju" sort="Lu, Yi Ju" uniqKey="Lu Y" first="Yi-Ju" last="Lu">Yi-Ju Lu</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhytophthoraV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001474 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001474 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhytophthoraV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:22233428
   |texte=   Patterns of plant subcellular responses to successful oomycete infections reveal differences in host cell reprogramming and endocytic trafficking.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:22233428" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhytophthoraV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:20:57 2020. Site generation: Wed Mar 6 16:48:20 2024